Math, asked by kavitaawasthi93, 9 months ago

if
x +  \frac{1}{x}  = 7 \: then find \: the \: value \: of \: x {}^{2}  +  \frac{1}{x {}^{2} }

Answers

Answered by singhkarishma882
3

\huge\red{SOLUTION}

Given :-

x +  \frac{1}{x}  = 7

Squaring on both the sides :-

(x +  \frac{1}{x} )^{2}  = ( {7)}^{2}

 {x}^{2}  + ( \frac{1}{x})^{2}  + 2(x)( \frac{1}{x} ) = 49

( \:  \: ( {a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \:  \: )

 {x}^{2}  +  \frac{1}{ {(x)}^{2} } + 2 = 49

 {x}^{2}  +  \frac{1}{ {x}^{2} }

49 - 2

Therefore,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 47

Answered by Anonymous
41

{ \tt{ \huge \underline{Given}}}

{ \rm{ \large{x +  \dfrac{1}{x}  = 7}}}

{ \tt{ \huge \underline{Solution}}}

{ \rm{ \large{ {x}^{2}  +  \dfrac{1}{ {x}^{2} }}} }

{ \rm{ \large{  = ( {x +  \dfrac{1}{x}) }^{2}  - 2.x. \dfrac{1}{x} }} }

{ \rm{ \large{  = ( {x +  \dfrac{1}{ x}) }^{2}  - 2. \not x. \dfrac{1}{ \not x} }} }

{ \rm{ \large{  = 49  - 2} }}

{ \rm{ \large{  = 47} }}

{ \tt{Ans \colon The \: value \: of \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \: is  = 47}}

──────────────────────────

More Info

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

.

Similar questions