Math, asked by turjomft666, 17 days ago

If
x +  \frac{1}{x}

equals to 10, then what's the answer of
x -  \frac{1}{x}

Answers

Answered by vikkiain
2

±4 \sqrt{6}

Step-by-step explanation:

Given, \:  \: x +  \frac{1}{x}  = 10 \\ square \:  \:  on  \:  \: both  \:  \: sides,  \\ (x +  \frac{1}{x} )^{2}  =  {10}^{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 100 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 100 \\  \boxed{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 98} \\ Now, \:  \:  \: (x -  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \times x \times  \frac{1}{x}  \\ (x -  \frac{1}{x} )^{2} = \boxed{  {x}^{2}  +  \frac{1}{ {x}^{2} }}  - 2 \\ (x -  \frac{1}{x} )^{2} = 98 - 2 \\ (x -  \frac{1}{x} )^{2} = 96 \\ x -  \frac{1}{x}  = ± \sqrt{96}  \\\boxed{ x -  \frac{1}{x}  = ±4 \sqrt{6}}

Similar questions