Math, asked by dishuprajapati1984, 6 months ago

if
x =  \sqrt{a + 2b}  +  \sqrt{a - 2b}  \div  \sqrt{a}  + 2b -  \sqrt{a}  - 2b
then prove that
bx {}^{2}  - ax + b = 0

Answers

Answered by satyamkumaryt495
0

Answer:

the question is wrong there are B 2 x please write the question again and clearly so I can answer the question please follow me and mark me as brainliest

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

 \bf \underline{To\: find-} \\

 \sf{prove \: that :  \:  {bx}^{2} - ax + b = 0 } \\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  } \\

\textsf{The denominator is : √(a+2b) - √(a-2b)}\\

\textsf{We know that}\\

\textsf{The rationalising factor of : √(p + q) - √(p-q) = √(p+q) + √(p-q).}\\

\textsf{Therefore, the rationalising factor of: √(a+2b) - √(a-2b) = √(a+2b) + √(a-2b).}\\

\textsf{On, rationalising the denominator,we get}\\

 \sf{x =  \frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}  -  \sqrt{a - 2b} }  \times\frac{ \sqrt{a  +  2b} +  \sqrt{a - 2b}  }{ \sqrt{a + 2b}   +  \sqrt{a - 2b} }   } \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b})( \sqrt{a + 2b}    +  \sqrt{a - 2b}) }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  -  \sqrt{a - 2b})( \sqrt{a + 2b}   +  \sqrt{a - 2b} )}  }  \\

\textsf{★ Now, comparing the denominator with (a-b)(a+b), we get}\\

 \sf{ \:  \:  \:  \:  \: a =  \sqrt{a + 2b} \: and \: b =  \sqrt{a - 2b}  } \\

\textsf{Using identity (a+b)(a-b) = a²-b², we get}\\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{( \sqrt{a + 2b}  {)}^{2}  -  (\sqrt{a - 2b} {)}^{2} }  }  \\

 \sf{x =  \frac{  (\sqrt{a  +  2b} +  \sqrt{a - 2b} {)}^{2}  }{a + 2b - (a + 2b) }  }  \\

 \sf{x =  \frac{ a + 2b + a - 2b + 2 \sqrt{ {a}^{2} -  {4b}^{2}  }   }{a + 2b - (a + 2b) }  }  \\

  \Rightarrow\sf{x =  \frac{a +  \sqrt{ {a}^{2}  -  {4b}^{2} } }{2b} } \\

\Rightarrow\sf{2bx =a +  \sqrt{ {a}^{2} -  {4b}^{2}  } } \\

\Rightarrow\sf{2bx - a = \sqrt{ {a}^{2}  -  {4b}^{2} } } \\

\textsf{Squaring on both sides,we get}\\

 \sf{(2bx - a {)}^{2} =  {a}^{2} - 4 {b}^{2}   } \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  +   \cancel{{a}^{2}} - 4abx -  \cancel{ {a}^{2}} +  {4b}^{2}    =0} \\

\Rightarrow\sf{ {4b}^{2} {x}^{2}  - 4abx  +  {4b}^{2}    =0 \:  \: \Rightarrow\sf{4( {b}^{2} {x}^{2}  - abx  +  {4b}^{2}  )  =0} } \\

\Rightarrow\sf{{b}^{2} {x}^{2}  - abx  +  {4b}^{2}    =0 \:  \:  \:  \:  \: \Rightarrow\sf{b( {b}{x}^{2}  - ax  +  {b} )  =0} } \\

\Rightarrow\sf{{b}{x}^{2}  - ax  +  {b} =0} \\

 \bf \underline{Hence, proved.} \\

Similar questions