Math, asked by eshan13, 1 year ago

If
x - y = 7
and
xy = 9
,find the value of
 {x }^{2}  +  {y}^{2}
.
First answer will get 50 points and will be marked as brainliest......answer fast......

Answers

Answered by AhseCurieuse
24
{\boxed{\sf{(x - y)^2 = x^2 + y^2 - 2xy}}}

\sf{x - y = 7 \qquad (Given)}

\sf{xy = 9 \qquad (Given)}

\sf{Putting \ values, \ we \ get}

\sf{(7)^2 = x^2 + y^2 - 2(9)}

\sf{49 = x^2 + y^2 - 18}

\sf{x^2 + y^2 = 49 + 18 = 67}

\sf\red{The \ value \ of \ x^2 + y^2 \ is \ 67.}

vimlakshkhadse: hlo
pradyumnadalai: what your class
pradyumnadalai: ..
vimlakshkhadse: just be 10th now then 11th
vimlakshkhadse: n u ?
pradyumnadalai: same class
vimlakshkhadse: ooo
pradyumnadalai: kahase ho
vimlakshkhadse: maharashtra sa or tum
Answered by pratyush4211
7
Given

x-y=7

xy=9

Using Identity=(a-b)²=a²+b²-2ab

Just Like

(x-y)²=x²+y²-2xy

7²=x²+y²+2×9. [ (x-y=7)(xy=9)]

49=x²+y²-18

x²+y²=49+18

x²+y²=67

\boxed{\mathtt{\huge{{x}^{2}+{y}^{2}=67}}}
Similar questions