Math, asked by kishornikumbh8051, 11 months ago

if
x + yi =  \sqrt{ \frac{a + ib}{c + id} }
then proove that
( {x}^{2}  +  {y}^{2} ) {}^{2}  =   \sqrt{ \frac{ {a}^{2} +  {b}^{2}  }{ {c}^{2} +   {d}^{2} } }

Answers

Answered by YameshPant
4

Step-by-step explanation:

x  +  yi = \sqrt{ \frac{a + ib}{c + id} }

...........(1)

therefore

x   -   yi = \sqrt{ \frac{a  -  ib}{c  -  id} }

.......(2)

multiplying (1) and (2)

we get,

 {x}^{2}   +  {y}^{2}  =  \sqrt{ \frac{(a + ib)(a - ib)}{(c + id)(c - id)} }

 {x}^{2}   +  {y}^{2}  =  \sqrt{ \frac{ {a}^{2} +  {b}^{2}  }{ {c}^{2} +  {d}^{2}  } }

Similar questions