Math, asked by Anonymous, 1 year ago

if y=  \sqrt{sin (x)+\sqrt{sin (x)+\sqrt{sin (x)+....}  }  }
till infinity
then  \frac{dy}{dx}=?

Answers

Answered by manitkapoor2
0
y= \sqrt{sin x + \sqrt{sin x + \sqrt{sin x + ..}  }  }
y^2-sinx=\sqrt{sin x +\sqrt{sin x +\sqrt{sin x + } .. }  }=y
diff. w.r.t x
2y \frac{dy}{dx}-cosx= \frac{dy}{dx}
 \frac{dy}{dx}= \frac{cos x}{2y +1}

Anonymous: thanks
Answered by kopal
1
y = undr root= ur = ur of sinx +ur of sinx +ur of sinx.+............
y*y - sinx= "    "    "    "'    "     "
2y = dy/dx -cosx = dy/dx
dy/dx = cosx / 2y+1.
hope this makes u understand.!!!!!
Similar questions