Math, asked by vaishu5851, 1 year ago

If y=x^{2} e^{x}, show that \frac{d^{2}y }{dx^{2}} -\frac{dy}{dx}-2(x+1)e^{x}=0

Answers

Answered by Anonymous
7
\underline{\bold{Solution:-}}

y = {x}^{2} {e}^{x} \: \: .....(1)\\ \\ on \: differentiating \: both \: sides \\ \\ \frac{dy}{dx} = \frac{d}{dy} ( {x}^{2} {e}^{x} ) \\ \\ by \: using \: product \: rule \\ = {x}^{2} \frac{d}{dy} {e}^{x} + {e}^{x} \frac{d}{dy} {x}^{2} \\ \\ = {x}^{2} {e}^{x} + {e}^{ x } (2x) \\ \\ = {e}^{x} x(x + 2)

For more see the attachment.
Attachments:
Similar questions