Math, asked by manishkum6918, 1 year ago

If y = sin⁻¹x, show that (1-x^{2})\frac{d^{2}y }{dx^{2}} -x\frac{dy}{dx}=0

Answers

Answered by Anonymous
9
\underline{\bold{Solution:-}}

y =  {sin}^{ - 1} x \\  \\ on \: differentiating  \: both \: sides\\  \\  \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\  \\ ( \sqrt{1 -  {x}^{2} })  \frac{dy}{dx}  = 1 \\  \\ on \: diffentiating \: both \: sides \\  \\  \sqrt{1  - {x}^{2} }  \frac{ {d}^{2} y}{ {dx}^{2} }  +  \frac{dy}{dx}  . \frac{d}{dx} ( \sqrt{1 -  {x}^{2} } ) = 0 \\  \\  \sqrt{1 -  {x}^{2} }  \frac{ {d}^{2} y}{ {dx}^{2} }  +  \frac{dy}{dx}  \frac{1 }{2 \sqrt{1 - {x}^{2}  } }  \frac{d}{dx} (1 -  {x}^{2} ) = 0 \\  \\ \sqrt{1 -  {x}^{2} }  \frac{ {d}^{2} y}{ {dx}^{2} }  +  \frac{dy}{dx}  \frac{1 }{2 \sqrt{1 - {x}^{2}  } } ( - 2x) = 0 \\  \\ on \: multiplying \: both \: sides \: by \:  \sqrt{1 -  {x}^{2} }  \\  \\ (1 -  {x}^{2} ) \frac{ {d}^{2} y}{ {dx}^{2} }  -x  { (\frac{dy}{dx} )}^{2}  = 0 \\  \\ (1 -  {x}^{2} )y2 - xy1 = 0


Hence proved
Similar questions