Math, asked by rishita880, 8 months ago

If
y = x^{n}
Find
 \frac{d ^{n}y }{dx ^{n} }

Answers

Answered by shadowsabers03
2

Given,

\longrightarrow y=x^n

The first derivative of y is,

\longrightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}(x^n)

\longrightarrow \dfrac{dy}{dx}=nx^{n-1}

\longrightarrow \dfrac{dy}{dx}=\dfrac{n(n-1)!}{(n-1)!}\cdot x^{n-1}

\longrightarrow \dfrac{dy}{dx}=\dfrac{n!}{(n-1)!}\cdot x^{n-1}

\longrightarrow \dfrac{dy}{dx}=\ ^n\!P_1\ x^{n-1}

The second derivative of y is,

\longrightarrow \dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)

\longrightarrow \dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(nx^{n-1})

\longrightarrow \dfrac{d^2y}{dx^2}=n\cdot\dfrac{d}{dx}(x^{n-1})

\longrightarrow \dfrac{d^2y}{dx^2}=n(n-1)x^{n-2}

\longrightarrow \dfrac{d^2y}{dx^2}=\dfrac{n(n-1)(n-2)!}{(n-2)!}\cdot x^{n-2}

\longrightarrow \dfrac{d^2y}{dx^2}=\dfrac{n!}{(n-2)!}\cdot x^{n-2}

\longrightarrow \dfrac{d^2y}{dx^2}=\ ^n\!P_2\ x^{n-2}

Assume that, for n=k\in\mathbb{N}, k^{th} derivative of y is,

\longrightarrow \dfrac{d^ky}{dx^k}=\ ^n\!P_k\ x^{n-k}\quad\quad\dots(1)

Let n=k+1 such that, (k+1)^{th} derivative of y is,

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\ ^n\!P_{k+1}\ x^{n-(k+1)}\quad\quad\dots(2)

Let's check whether it's true.

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\dfrac{d}{dx}\left(\dfrac{d^ky}{dx^k}\right)

From (1),

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\dfrac{d}{dx}\left(^n\!P_k\ x^{n-k}\right)

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\,^n\!P_k\cdot\dfrac{d}{dx}\left(x^{n-k}\right)

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\dfrac{n!}{(n-k)!}\cdot(n-k)x^{n-k-1}

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\dfrac{n!}{(n-k-1)!}\cdot x^{n-k-1}

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\dfrac{n!}{(n-(k+1))!}\cdot x^{n-(k+1)}

\longrightarrow \dfrac{d^{k+1}y}{dx^{k+1}}=\ ^n\!P_{k+1}\ x^{n-(k+1)}

Hence (2) is true whenever (1) is true.

Therefore, n^{th} derivative of y is,

\longrightarrow \dfrac{d^ny}{dx^n}=\ ^n\!P_n\ x^{n-n}

\longrightarrow\underline{\underline{\dfrac{d^ny}{dx^n}=n!}}

Similar questions