Math, asked by kvk146204, 6 days ago

If than co ti d) = tana + iseca, show that 20=nr+1/2+2 and e2 Pa I cot 2/2 е​

Attachments:

Answers

Answered by purusottamkandi10
0

Answer:

Since I=[

1

0

0

1

] and given

A=

0

tan

2

α

−tan

2

α

0

∴I+A=[

1

0

0

1

]+

0

tan

2

α

−tan

2

α

0

=

1

tan

2

α

−tan

2

α

1

R.H.S=(I−A)[

cosα

sinα

−sinα

sinα

]

=

0

−tan

2

α

tan

2

α

0

[

cosα

sinα

−sinα

sinα

]

=

0

−tan

2

α

tan

2

α

0

1+tan

2

2

α

1−tan

2

2

α

1+tan

2

2

α

2tan

2

α

1+tan

2

2

α

−2tan

2

α

1+tan

2

2

α

1−tan

2

2

α

Let tan(

2

α

)=λ, then

R.H.S=[

1

−λ

λ

1

]

1+λ

2

1−λ

2

1+λ

2

1+λ

2

−2λ

1+λ

2

1−λ

2

=

1+λ

2

1−λ

2

+2λ

2

1+λ

2

−λ(1−λ

2

)+2λ

1+λ

2

−2λ+λ(1−λ

2

)

1+λ

2

2

+1−λ

2

=

1+λ

2

1+λ

2

1+λ

2

λ(1+λ

2

)

1+λ

2

−λ(1+λ

2

)

1+λ

2

2

+1−λ

2

=

1

tan

2

α

−tan

2

α

1

since λ=tan

2

α

=I+A

=LHS

∴I+A=(I−A)[

cosα

sinα

−sinα

sinα

]

Hence Proved

Similar questions