If the 10th term of an AP is 21 and the sum of its first ten terms is 120, find its nth term....
Please guys give me answer quickly..
Answers
Answered by
2
Answer:
your answer is here buddy....
given,
a10= 21
s10= 120
to find ,
an.....
a10= a+(n-1)d
21= a+9d
a+9d-21= 0.............(1)
s10= n/2(2a+(n-1)d
120= 5(2a+9d)
120= 10a+45d
10a+45d-120= 0..........(2)
solve 1 & 2...by elimination method...
10a+90d=210...........(multiply by 10)
10a+45d= 120.......
now, change the sign..
10a+90d= 210
-10a -45d= -120
__. 45d= 90
d= 90/45
d=2
then a,
a+9d= 21
a+18= 21
a= 3
now applying an..formulla,
an = a+(n-1)d
taking n as 2.......(let it be 2nd term)
a2= 3+1(2)
a2= 5......
then an =....
an= 3+(n-1)2
an= 3+2n-2
an= 1+2n”...
hope this will help you...
plss mark as brainlist....
Answered by
2
Answer:
a10=21
s10=120
- an=a+(n-1)d=?
- a10=a+95=21
- s10=n÷2{2a (n-1)d)]=120
- 10÷2 [2a+(10-1)d]=120
- 5 [2a+9d ]=120
- 2a+9d=120÷5
- 2a+9d=24
- from 1 and 2 equation sub:
- a+9d=21
- a+9d=24
- - - -
- -a= -3
- a=3
- a+9d=21
- 3+9d=21
- 9d=21-3
- 9d=18
- d=18÷9
- d=21
an=a+(n-1)d
= 3+(n-1)2
= 3+2n-2
= 2n+1
hence proof
Similar questions