Math, asked by reghunathrreghunathr, 11 months ago

if the 4th and 9th term of ap are 8 and -4 then which term is 0​

Answers

Answered by wwwseenalingampalli
0

Step-by-step explanation:

hope it is helpful to you

Attachments:
Answered by Anonymous
4

\bold\red{\underline{\underline{Answer:}}}

\bold{\frac{22}{3}^{nd} \ term \ is \ zero.}

\bold\orange{Given:}

\bold{In \ an \ A.P.,}

\bold{=>4th \ term \ is \ 8}

\bold{=>9th \ term \ is \ -4}

\bold\pink{To \ find:}

\bold{Which \ term \ is \ zero}

\bold\green{\underline{\underline{Solution}}}

\bold{tn=a+(n-1)d... formula}

\bold{8=a+(4-1)d}

\bold{8=a+3d}

\bold{i.e.a+3d=8...(1)}

______________________________________

\bold{t9=a+(9-1)d}

\bold{-4=a+8d}

\bold{i.e.a+8d=-4...(2)}

\bold{Subtract \ eq(1) \ from \ eq (2)}

\bold{a+8d=-4}

\bold{-}

\bold{a+3d=8}

\bold{5d=-12}

\bold{d=\frac{-12}{5}}

\bold{Substitute \ value \ of \ d \ in \ eq(1)}

\bold{a+3(\frac{-12}{5})=8}

\bold{a+(\frac{-36}{5})=8}

\bold{a=8+\frac{36}{5}}

\bold{a=\frac{36+40}{5}}

\bold{a=\frac{76}{5}}

__________________________________

\bold{Now,tn=0, \ a=\frac{76}{5} , d=\frac{-12}{5}}

\bold{tn=a+(n-1)d...formul}

\bold{0=\frac{76}{5}+(n-1)×(\frac{-12}{5})}

\bold{\tt{\therefore{(n-1)×(\frac{-12}{5})=\frac{-76}{5}}}}

\bold{(n-1)=\frac{-76}{5}×\frac({-5}{12})}

\bold{n-1=\frac{19}{3}}

\bold{n=\frac{19+3}{3}}

\bold{n=\frac{22}{3}}

\bold\purple{\tt{\therefore{\frac{22}{3}^{nd} \ term \ is \ zero.}}}

Similar questions