Math, asked by kalpanabhor, 11 months ago

If the 9th and 21 th terms of an A.P.are 75 and183 respectively , find its 81 st term​

Answers

Answered by 9759614466vijaysingh
1

let 9d and 21d is a+8d=75 a+20d=183 -12d=-108 d9

Answered by Anonymous
13

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt given\begin{cases}  \sf{9^{th} \: term \: of \: the \: A.P \: is 75} \\  \sf{21^{st} \: term \: of \: the \: A.P \: is \: 183}  \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find \sf{81^{st}} term of the A.P.

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

A.T.Q

a + 8d = 75 .......... (1)

a + 20d = 183 ..........(2)

____________________________

→From equation (1)

a = 75 - 8d

→ Put value of a in equation (2)

____________________________

75 - 8d + 20d = 183

→75 + 12d = 183

→12d = 108

→d = 108/12

→d = 9

____________________________

Put Value of d in equation (1)

a + 8(9) = 75

a = 75 - 72

a = 72

_____________________________

Now,

\Large{\star{\boxed{\sf{A_n = a + (n - 1)d}}}}

\sf{A_{81} = 3 + (81 - 1)3} \\ \\ \sf{A_{81} = 3 + 240} \\ \\ \sf{A_{81} = 243}

\sf{\therefore \: 81^{st} \: term \: of \: the \: A.P \: is \: 243}

Similar questions