Math, asked by UtkarshGanesh, 1 year ago

if the A.M. between a and b is equal to n times their G.M
find the ratio of a to b

Answers

Answered by rohitkumargupta
59
HELLO DEAR,

Given A.M. between two positive number a and b is n times the G.M.

⇒ A.M. = n G.M.

(a + b)/2 = n√ab

(a + b)/2√ab = n/1

Applying componendo and Dividendo

\bold{\frac{a + b + 2\sqrt{ab}}{a + b - 2\sqrt{ab}} = \frac{n + 1}{n - 1}}

\bold{\frac{(\sqrt{a} + \sqrt{b})^2}{(\sqrt{a} - \sqrt{b})^2} = \frac{n + 1}{n - 1}}

\bold{\frac{(\sqrt{a} + \sqrt{b})}{(\sqrt{a} - \sqrt{b})} = \sqrt{\frac{n + 1}{n - 1}}}

again, applying componendo and dividend.

\bold{\frac{\sqrt{a} + \sqrt{b} + \sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b} - \sqrt{a} + \sqrt{b}} = \frac{\sqrt{n + 1} + \sqrt{n - 1}}{\sqrt{n + 1} - \sqrt{n - 1}}}

\bold{\frac{2\sqrt{a}}{2\sqrt{b}} = \frac{\sqrt{n + 1} + \sqrt{n - 1}}{\sqrt{n + 1} - \sqrt{n - 1}}}

\bold{\frac{a}{b} = \frac{n + 1 + n - 1 + 2\sqrt{(n + 1)(n - 1)}}{n + 1 - n + 1 - 2\sqrt{(n + 1)(n - 1)}}}

\bold{\frac{a}{b} = \frac{2n + 2\sqrt{(n^2 - 1)}}{2 - 2\sqrt{(n^2 - 1)}}}

\bold{\frac{a}{b} = \frac{n + \sqrt{n^2 - 1}}{1 - \sqrt{n^2 - 1}}}

Hence, the ratio of a to b is \bold{[n + \sqrt{n^2 - 1}]} : \bold{[1 - \sqrt{n^2 - 1}]}

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions