Math, asked by bhedashraddhaa5323, 10 months ago

If the altitude of the sun is at 60° then the height of the vertical tower that will cast a shadow of length 30m is

Answers

Answered by Gandharv1105
12

Answer:

30√3m

Step-by-step explanation:

angle of elevation = thetha =60°

tan 60° = height of tower / shadow length = h/30

√3 = h/30

h= 30√3m

Answered by Anonymous
23

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

  \tt given\begin{cases}  \sf{Height \: of \: the \: shadow \: of \: tower = 30 \: m} \\  \sf{Angle \: of \: elevation = 60^{\circ}}  \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find the height of the tower.

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

Let height of tower be x.

We know that,

\Large{\star{\boxed{\sf{tan \: \theta = \dfrac{Perpendicular}{Base}}}}}

Where,

  • Base = Height of shadow
  • Perpendicular = Height of tower

\rule{150}{2}

\sf{tan 60^{\circ} = \frac{x}{30}}

\Large{\star{\boxed{\sf{tan \: 60^{\circ} = \sqrt{3}}}}}

\sf{\mapsto x = 30\sqrt{3} \: m}

\therefore Height of tower is 303 m.

\rule{200}{2}

★ Refer the given below diagram

\setlength{\unitlength}{1.3 pt}\begin{picture}(100,100)(0,0)\put(0,10){\line(1,0){95}}\put(40,10){\line(0,1){55}}\put(95,10){\line(-1,1){85}}\multiput(0,65)(6,0){7}{\line(1,0){3}}\put(92,11){\circle{4}}\put(10,95){\circle*{20}}\put(38,66){\circle{1.6}}\put(24,40){$\sf{x \: m}$}\put(15,50){$\bf{Tower}$}\put(60,0){$\sf{30\: m}$}\put(20,68){$60^{\circ}$}\put(75,12){$60^{\circ}$}\put(10,105){$\bf Sun$}\put(40,3){$\sf B$}\put(40,68){$\sf A$}\put(95,3){$\sf C$}\end{picture}

Similar questions