Math, asked by mousamhazarika, 1 year ago

if the angle between two tangents draw from an external point P to a circle of radius and a centre O, is 60degree,then find the lenght of OP

Answers

Answered by eeeee6
1139

Answer:


Step-by-step explanation:

OA=a

OP=?

ANGLE BETWEEN TANGENTS=60°

Tangents are equally aligned to each other

=> <OPA=<OPB=30°

IN ∆OPA,

<POA=180°-90°-30°

=60°

Cos 60°=OA/OP

1/2 =a/OP

=> OP = 2a(Ans)



Answered by SushmitaAhluwalia
228

The length of OP is 2a units.

  • Let PQ and PR be two tangents drawn from P to the circle with center 'O'.
  • Given,

                ∠RPQ = 60°

  • OP is angle bisector of ∠RPQ

                ⇒ ∠OPQ = ∠OPR = 30°

  • Let 'a' be the radius of the circle.

                ⇒ OQ = OR = a

  • Now, PQ⊥OQ and PR⊥OR    [∵ tangent is perpendicular to radius]
  • From ΔOPQ,

                    sin30=\frac{OQ}{OP}

                     \frac{1}{2}=\frac{a}{OP}

                ⇒ OP = 2a units

                   

Attachments:
Similar questions