Math, asked by itzDevilMoon, 10 months ago


If the angles of the Quadrilateral are given in ratio 2:3:4:6 . Then find the value of all the angles of Quadrilateral ?​

Answers

Answered by dipamcool2016
0

Answer:

The Angles are: 48,72,96,144°.

Step-by-step explanation:

Let the angles be marked as A,B,C,D.

Ratio = 2:3:4:6

Total Ratio = (2+3+4+6)

= 15

Angle A = (2/15*360)°

= 48°

Angle B = (3/15*360)°

= 72°

Angle C = (4/15*360)°

= 96°

Angle D = (6/15*360)°

= 144°

Hope this helps.

Answered by Anonymous
8

\huge{ \mathrm{ \star{ \underline{ \underline{ \red{Question}}}}}}

\large{ \mathrm{ \bullet{ If\:the \:angles  \: of\: Quadrilateral \: are }}} \large{ \mathrm{  in \: ratio  \: 2:3:4:6 \: . \:Then\: find \: the }} \large{ \mathrm{   value \: of \: all \: angles \: of \: Quadrilateral .}}

\huge{ \mathrm{ \underline{ \underline{ \blue{Answer}}}}}

48° , 72° , 96° , 144°

\huge{ \underline{ \pink{ \mathrm{Solution}}}}

{Let\:  \:the \: \:angles\: = \:2a , 3a , 4a , 6a}

A.T.Q.

\begin{lgathered}⟹ \ 2a+3a+4a+6a = \ 360° \\ \\⟹  \ 15a = \ 360° \\ \\⟹ \ a = \ \frac{360}{15} \\ \\⟹ \ a = \ 24° \end{lgathered}

Angles are ⬇️

✨24 × 2 = 48°

✨24 × 3 = 72°

✨24 × 4 = 96°

✨24 × 5 = 144°

\therefore{ \orange{ \mathrm{ \large{ \underline{ \underline{ So, \: angles \:are\: 48°,72°,96°,144°  }}}}}}

______________________________________

\huge{@itzBrainlyTanuj}

Similar questions