Math, asked by anagha2858, 1 month ago

If the arcs if the same length in 2 circles subtend angles 65° and 70° at the centre, find the ratio of their radii

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest pls

Step-by-step explanation:

so \: here \: for \: a \: certain \: circle \:  \\ its \: two \: arcs \: are \: of \: equal \: length \:  \\ so \: let \: those \: two \: arcs \: be \: l1 \: and \: l2 \\ hence \:  \: l1 = l2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

so \: for \: l1 \:   its \: radius \: be \: r1 \: and \: for \: l2 \: be \: r2 \\ so \: here \: let \: central \: angle \: of \: l1 \: be \:  \: θ1 \: and \: that \: of \: other \: be \: θ2 \\ so \: here \: θ1 = 65 \\ θ2 = 70

so \: we \: know \: that \:  \\ length \: of \: an \: arc = θ/360 \times 2\pi.r \\ hence \: as  \: \: l1 = l2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (1) \\ θ1/360 \times 2\pi.r1 = θ2/360 = 2\pi.r2 \\ θ1.r1 = θ2.r2 \\ 65.r1 = 70.r2 \\ ie \:  \: r1/r2 = 70/65

thus  \: \: r1/r2 = 14/13 \\ hence \: ratio \: of \: these \:   radii \: of \: arcs \: of \: equal \: lengths \: is \: 14 : 13

Answered by rakeshdubey33
1

r_1 : r_2 = 14 : 13

Step-by-step explanation:

Let arc lengths radii and angles of the two crcles be ,

l_1, l_2, \:  \:  r_1,  r_2 \:  \: and  \:  \theta_1,  \theta_2  \:  \:  respectively.

Then,

l_1  =   r_1 \times \theta_1  \:  \:  \: and \:  \: l_2  =   r_2 \times \theta_2

Here, Arc lengths are equal.

Therefore,

r_1 \times \theta_1 \:  \: =   r_2 \times \theta_2

 \frac{r_1}{r_2}  = \frac{ \theta_2}{ \theta_1}

Therefore,

r_1 : r_2 = 70 : 65 \:  \\   \implies r_1 : r_2 = 14 : 13.

Hence, the answer.

Similar questions