Math, asked by meholi6706, 11 months ago

If the area (in sq. units) bounded by the parabola y² = 4λx and the line y = λx, λ > 0, is 1/9, then λ is equal to :
(A) 48 (B) 4√3
(C) 2√6 (D) 24

Answers

Answered by IamIronMan0
0

Answer:

I am using " a " instead of lambda for ease .

First find intersection point

 {y}^{2}  =  4ax  \\ \\ put \: y = ax  \\ \\  (ax) {}^{2}  = 4ax \\ (ax) {}^{2}   - 4ax = 0 \\ ax(ax - 4) = 0 \\  \\ x = 0 \:  \: and \:   \: \frac{4}{a}  \:  \:  \:  \:  \:  \:  \:  \: a \neq0

Now area under curve

  =  \pink{  \int_{0} ^{ \frac{4}{a} }  ( \sqrt{ 4ax} - ax) \: dx }\\  \\    =  \frac{2}{3} x \sqrt{x} ( \sqrt{4a}) - a .\frac{ {x}^{2} }{2}   \\ \\  put \: limits \\  \\  =  \frac{2}{3}  \times  \frac{4}{a}  \sqrt{4a \times  \frac{4}{a} }  - a \times  \frac{16}{2 {a}^{2} }  \\  \\  =  \frac{32}{3a}  -  \frac{8}{a}  \\  \\  =  \frac{8}{3a}  =  \frac{1}{9}  \:  \:  \:  \: (given) \\  \\    \implies  \huge \red{a = 24}

Similar questions