Math, asked by llMissTanull, 11 days ago

if the area of a rhombus is 48 cm2 and one of its diagonals is 6 cm, find its altitude.

Answer with explanation. ...

No spam

No spam

No spam​

Answers

Answered by gollamanoj07
2

Step-by-step explanation:

Area of Rhombus = 48cm²

diagonal 1 = 6cm

let be another diagonal be ' y '

Formula

A = 1/2 ×d¹d²

48 = 1/2×6×y

48 = 3y

y = 48/3

y = 16

please mark me as brainliest

Answered by misscuteangel
35

 \huge \sf   \red \bigstar \: {\pink{\underbrace{GIVEN}}} \:  \red \bigstar

 \\

 \sf \: area \: of \: rhombus = 48 cm^{2}

 \\  \sf \: one \: of \: its \: diagonal = 6 \: cm

 \\  \sf \: altitude = \:  ?

 \\ \huge  \red \bigstar  \sf \:  {\pink{ \underbrace{SOLUTION}}}  \:  \red \bigstar

 \\

➳ Let PQRS be a rhombus whose diagonal PR = 6 cm.

➳ Now, Area of rhombus PQRS given = 48 cm2

 \\  \sf \: ➳ \:  \dfrac{1}{2}  \times \: PR \:  \times SQ = 48 {cm}^{2}  \\ </p><p> \\  \sf \: ➳ \:  \dfrac{1}{ \cancel{2}}  \times { \cancel6} \: cm \times SQ = 48 {cm}^{2}  \\  \\  \sf \: ➳ \: SQ =  \frac{ \cancel{48} \: cm^{2} }{ \cancel{3} \: cm}  = 16 \: cm

 \\

➳ Since diagonals of a rhombus bisect each other at right angle, we have

 \\  \\ ➳ \sf \: OP =  \dfrac{1}{2}  \: \\  \\  \sf➳ \:  PR =  \frac{1}{ \cancel{2} } \times { \cancel6} \: cm \: = 3 \: cm \\  \\   \sf \: ➳ \: OQ =  \dfrac{1}{2}  \\  \\  \sf \:➳ \:  SQ =  \dfrac{1}{ \cancel{2} } \times { \cancel{16}} \: cm \:  = 8 \: cm

 \\  \\

➳ Also, ∆POQ is a right triangle, where right ∆POQ = 90°

 \\  \sf \: ∴ \: PQ =  \sqrt{OP ^{2}+OQ^{2}}</p><p> \sf \sqrt{(3^{2} + (8)^{2}</p><p>

Attachments:
Similar questions