Math, asked by Anonymous, 1 year ago

if the area of a square is
 {x}^{2} + \frac{1}{ {x}^{2} } + 3 - 2x - \frac{2}{x}
find it's one side​

Answers

Answered by DreamGlow
2

Answer:

 (x +  \frac{1}{x}  - 1)(x +  \frac{1}{x}  - 1)

Step-by-step explanation:

Area of the square given =

x² + 1 +1+1/x²-x-x-1/x-1/x

As we know the area of square = side²

so, side =√x² + 1 +1+1/x²-x-x-1/x-1/x

Solution :

 {x}^{2} + \frac{1}{ {x}^{2} } + 3 - 2x - \frac{2}{x}

 {x}^{2}  + 1 + 1 + 1 +  \frac{1}{ {x}^{2} }  -x - x -  \frac{1}{x}  -  \frac{1}{x}

 {x}^{2}  + 1 - x + 1 +  \frac{1}{ {x}^{2} }  -  \frac{1}{x}  + 1 -  \frac{1}{x}  -  \frac{1}{x}

x(x +  \frac{1}{x}  - 1) +  \frac{1}{x} (x +  \frac{1}{x} - 1) - 1(x +  \frac{1}{x}  - 1)

 =  > (x +  \frac{1}{x}  - 1)(x +  \frac{1}{x}  - 1)

Similar questions