Math, asked by bipro36, 5 months ago

If the area of curved surface and tje volume of a sphere are x² unit and y³ unit respectively then find the value of x³ / y³​

Answers

Answered by aryan073
2

Given :

• Area of curved surface of sphere =x² units

• The volume of sphere =y³ units

To find :

\red\bigstar\boxed{\sf{The \: value \: of \: \dfrac{x^{3}}{y^{3}}=?}}

Formula :

 \red \bigstar \boxed{ \sf{area \: of \: curved \: surface \: of \: sphere = 4\pi {r}^{2} }}

  \\ \red \bigstar \boxed{ \sf{volume \: of \: sphere \frac{4}{3} \pi {r}^{3} }}

Solution :

  \\  \implies \sf\frac{ {x}^{3} }{ {y}^{3} }  =  \frac{area \: of \: curved \: surface \: of \: sphere}{volume \: of \: sphere}

  \\ \implies \sf \:  \frac{ {x}^{3} }{ {y}^{3} }  =  \frac{4\pi {r}^{2} }{ \frac{4}{3}\pi {r}^{3}  }  \\  \\  \\  \implies \sf \:  \frac{ {x}^{3} }{ {y}^{3} }  =  \frac{ \cancel {4\pi {r}^{2} } }{ \cancel {\frac{4}{3} \pi {r}^{3} } } \\  \\  \\  \implies \sf \:  \frac{ {x}^{3} }{ {y}^{3} }  =  \frac{1}{ \frac{1}{3} r}  \\  \\  \\  \implies \boxed{\sf{ \:  {x}^{3}  = 3r {y}^{3}  \:  \:  \: and \:  \:  {y}^{3}  =  \frac{ {x}^{3} }{3r}}}

Similar questions