Math, asked by aruntamang763, 6 months ago

If the area of equilateral triangle is.
 \sqrt[8]{3}
SqCm. Find its height and perimeter

Answers

Answered by Suryansh1018
1

Step-by-step explanation:

Check out the solution

hope it will help you

Attachments:
Answered by Anonymous
27

\mathfrak{\bf{\underline{\underline{Fᴏʀᴍᴜʟᴀ \ ⟹}}}}

⟹ㅤㅤㅤArea \: of \: E quilateral \: Triangle \:  =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\

⟹ㅤㅤㅤArea \: of  \: Triangle \: =  \frac{1}{2}  \:  \times b \: \times   {h}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

ㅤㅤㅤ 8 \sqrt{3}  =  \frac{1}{2}  \times 4 \sqrt{2}  \:  \times h \\ </p><p>ㅤh = \:   \frac{4 \sqrt{3} }{ \sqrt{2} } </p><p> ㅤ\\ h =  \frac{4 \sqrt{3} }{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  </p><p>ㅤ\\ h =  \frac{4 \sqrt{6} }{2} </p><p>\\ \boxed{h = 2 \sqrt{6 }  \: cm}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\mathfrak{\bf{\underline{\underline{Gɪᴠᴇɴ \ ⟹}}}}

ㅤㅤArea \: of \: E quilateral \: Triangle \: = 8 \sqrt{3}

ㅤㅤㅤㅤㅤㅤㅤ \frac{ \sqrt{3} }{4}  {a}^{2}  = 8 \sqrt{3 }  \\ㅤㅤㅤㅤㅤㅤ  {a }^{2}  = 8 \times 4 \\  ㅤㅤㅤㅤㅤㅤ{a}^{2}  = 32 \\ㅤㅤㅤㅤㅤㅤ a =  \sqrt{32}  \\ ㅤㅤㅤㅤㅤㅤㅤa = 4 \sqrt{2}

ㅤㅤㅤㅤㅤㅤPᴇʀɪᴍᴇᴛᴇʀ \:  = 4 \sqrt{2}  \times 3 \\ㅤㅤㅤㅤㅤㅤ\boxed{Pᴇʀɪᴍᴇᴛᴇʀ = 12  \sqrt{2} \:  cm}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions