Math, asked by guggus723, 1 year ago

if the area of the shaded region given in Figure 2 is 39. 47 CM raise to power to find the radius of the circles​

Attachments:

Answers

Answered by Anonymous
12

\large{\underline{\underline{\mathfrak{\pink{\sf{Answer-}}}}}}

\large{\underline{\boxed{\blue{\sf{r=7.73cm^2}}}}}

\large{\underline{\underline{\mathfrak{\pink{\sf{Explanation-}}}}}}

\orange{\boxed{\pink{\underline{\red{\mathfrak{Given-}}}}}}

  • Area of shaded reason = 47 cm²

\orange{\boxed{\pink{\underline{\red{\mathfrak{To\:find-}}}}}}

  • Radius of circle

\orange{\boxed{\pink{\underline{\red{\mathfrak{Formula\:used-}}}}}}

  • Area of quadrant = \dfrac{1}{4}πr²

\orange{\boxed{\pink{\underline{\red{\mathfrak{Solution-}}}}}}

The shaded reason shown in the attachment is of a quadrant.

\implies 47 = \dfrac{1}{4}{22}{7}

\implies r² = \dfrac{47×7×4}{22}

\implies r² = \dfrac{1316}{22}

\implies r² = 59.82

\implies r = √59.82

\large{\underline{\boxed{\blue{\sf{r=7.73cm\:(approx)}}}}}

Therefore, radius of the circle = 7.73 cm ( approx )

________________________

#answerwithquality

#BAL

Answered by TiggerFresh
6

\huge{\text{\underline{\underline{\red{Solution:}}}}}

\sf{47 =  \frac{1}{4} 227 {r}^{2} }

\sf{{r}^{2}  =  \frac{47 \times 7 \times 4}{22} }

\sf{{r}^{2}  =  \frac{1316}{22} }

\sf{{r}^{2}  = 59.82}

\sf{ r =  \sqrt{59.82} }

\huge{\bf{\fbox{\pink{r=7.73}}}}

\large{\text{\blue{Therefore\:radius\:of\: circle\: is\: 7.73}}}

Similar questions