Math, asked by sainavin5627, 1 year ago

If the arithmetic mean of two number a and b is 5 times their geometric mean, find a+b/a-b

Answers

Answered by BEJOICE
4

given \:  \frac{a + b}{2}  = 5 \sqrt{ab}
Squaring and rearranging,
 {a}^{2}  - 98ab +  {b}^{2}  = 0
dividing \: throughout \: by \:  {b}^{2}
 {( \frac{a}{b} })^{2}  - 98( \frac{a}{b} ) + 1 = 0
Applying standard formula for quadratic equation,
 \frac{a}{b}  = 49 + 20 \sqrt{6}  \:  \: or \: 49 - 20 \sqrt{6}
applying \: the \: relation \: if \:  \frac{a}{b}  =  \frac{x}{y}
then \:  \frac{a + b}{a - b}  =  \frac{x + y}{x - y}
thus \:  \frac{a + b}{a - b}  =  \frac{(49 + 20 \sqrt{6 } ) + 1}{(49 + 20 \sqrt{6} ) - 1}  = \frac{25 + 10 \sqrt{6 }}{24+ 10 \sqrt{6}}
Taking another value for a/b,
\frac{a + b}{a - b}  =  \frac{(49  -  20 \sqrt{6 } ) + 1}{(49  -  20 \sqrt{6} ) - 1}  = \frac{25  - 10 \sqrt{6 }}{24 - 10 \sqrt{6}}


Answered by sahusujal
3

From the information we are given:

2 ( a + b ) = 5 √ a b

Multiply both sides by  

2

to get:

a + b = 10 √ a b

Square both sides to get:

( a + b )²  = a²  + 2 a b + b²  = 100 a b

Subtract  4 a b

from both ends to get:

( a b ) ² = a ²− 2 a b + b ² = 96 a b

So:

( a + b /a − b ) ² = 100 a b /96 a b = 25 /24 = 5 ²* 6 /12 ² = ( 5 √ 6/ 12 ) ²

So since  

a > b

we can take the positive square root to find:

a + b/ a − b = 5/√ 6/ 12

Similar questions