Math, asked by karthikrockszz2000, 11 months ago

If the circle
x² + y2 - 4x +6y+a = 0 has
radius 4 then find a ,b

Answers

Answered by MaheswariS
1

\textbf{Given:}

\text{Equation of circle is $x^2+y^2-4x+6y+a=0$}

\textbf{To find:}

\text{The values of 'a'}

\textbf{Solution:}

\text{We know that,}

\text{The radius of the circle $x^2+y^2+2gx+2fy+c=0$ is}

\bf\sqrt{g^2+f^2-c}

\text{Comparing $x^2+y^2-4x+6y+a=0$  with}

\text{$x^2+y^2+2gx+2fy+c=0$ we get g=-2, f=3 and c=a}

\textbf{Radius = 4 units}

\implies\sqrt{g^2+f^2-c}=4

\implies\,g^2+f^2-c=16

\implies\,(-2)^2+3^2-a=16

\implies\,4+9-a=16

\implies\,-a=16-13

\implies\bf\,a=-3

\therefore\textbf{The value of a is -3}

Find more:

Find the equation of the circle passing through the points (1,2),(3,-4)and (5,-6)find the centre and rafius in each case

https://brainly.in/question/5281562

Find the equation of circle which passes through points (5,-8),(2,-9) and(2,1). Find also the coordinates of its centre and radius

https://brainly.in/question/7466726

Answered by bathulasathwikreddy9
0

Step-by-step explanation:

\text{We know that,}We know that,

\text{The radius of the circle $x^2+y^2+2gx+2fy+c=0$ is}The radius of the circle x

2

+y

2

+2gx+2fy+c=0 is

\bf\sqrt{g^2+f^2-c}

g

2

+f

2

−c

\text{Comparing $x^2+y^2-4x+6y+a=0$ with}Comparing x

2

+y

2

−4x+6y+a=0 with

\text{$x^2+y^2+2gx+2fy+c=0$ we get g=-2, f=3 and c=a}x

2

+y

2

+2gx+2fy+c=0 we get g=-2, f=3 and c=a

\textbf{Radius = 4 units}Radius = 4 units

\implies\sqrt{g^2+f^2-c}=4⟹

g

2

+f

2

−c

=4

\implies\,g^2+f^2-c=16⟹g

2

+f

2

−c=16

\implies\,(-2)^2+3^2-a=16⟹(−2)

2

+3

2

−a=16

\implies\,4+9-a=16⟹4+9−a=16

\implies\,-a=16-13⟹−a=16−13

\implies\bf\,a=-3⟹a=−3

\therefore\textbf{The value of a is -3}∴The value of a is -

Similar questions