Math, asked by karthikadrdr8845, 11 months ago

If the circles x2 + y2 +2x + 2ky + 6 = 0 and x2 + y2 + 2ky + k = 0 intersect orthogonally then k equals ?

Answers

Answered by clockkeeper
20

equations of circles are

 {x}^{2} +  {y}^{2}  + 2x + 2ky + 6 = 0 \\ here  \: \: g \frac{}{1}  =  - 1 \:  \:  \:  \: f \frac{}{1}  =  - k \:  \:  \:  \: c \frac{}{1}  = 6 \\  \\ other \: eq. \: is \\  {x}^{2}  +  {y}^{2}  + 2ky + k = 0 \\ here \:  \: g \frac{}{2}  = 0 \:  \:  \:  \: f \frac{}{2}  =  - k \:  \:  \:  \: c \frac{}{2}  = k \\  \\ for \: the \: circles \: to \: intersect \: each  \\ other \: orthogonally \\ 2(g \frac{}{1} )(g \frac{}{2} ) + 2(f \frac{}{1} )(f \frac{}{2} ) = c \frac{}{1}   \:  \:  +  \:  \: c \frac{}{2}  \\ 2( - 1)(0) + 2( - k)( - k) = 6 + k \\ 2 {k }^{2}  - k - 6 = 0 \\  {2k}^{2}  - 4k + 3k - 6 = 0 \\ 2k(k - 2) + 3(k - 2) = 0 \\ (k - 2)(2k + 3) = 0 \\ therefore \\ k = 2 \:  \:  \: or \:  \:  \:  \frac{ - 3}{2}

hope ot helps(^_-)≡★

Answered by amirgraveiens
4

The circles x^{2} +y^{2}+2x+2ky+6=0  and x^{2} +y^2+2ky+k=0 intersect orthogonally then k equals to 2 or \frac{-3}{2}.

Step-by-step explanation:

Given:

The circles x2 + y2 +2x + 2ky + 6 = 0 and x2 + y2 + 2ky + k = 0 intersect orthogonally.

Let R_{1} and R_{2} be the radius of both circles and d be the distance between the centres of two circles

Two circles are intersect orthogonally if R_{1}^{2}+R_{2}^{2}=d^{2}

The equations of circles are

x^{2} +y^{2}+2x+2ky+6=0

On arranging the given equation, we

x^{2} +2x+4+y^{2}+2ky+2 =0

Adding k^{2} on both the side

x^{2} +2x+4+y^{2}+2ky+2+k^{2} =0+k^{2}

(x^{2} +2x+4)+(y^{2}+2ky+k^{2})+2 =k^{2}

(x+2)^{2}+(y+k)^{2}+2=k^2

(x+2)^{2}+(y+k)^{2}=k^2-2                    (1)

Now solving second equation

x^{2} +y^2+2ky+k=0

Adding k^{2} on both the side

x^{2} +y^2+2ky+k+k^2=k^2

x^{2} +(y+k)^{2}+k=k^2

x^{2} +(y+k)^{2}=k^2-k                      (2)

Both the equations are converted to general form (x-h)^2+(y-k)^2=r^2, where (h,k) is centre of circle.

Hence centres of circles are C_1(-2,-k) and C_2(0,-k)

Apply the condition of orthogonal we get,

R_1^2+R_2^2=d^2

k^2-2+k^2-k = (0-(-2))^2+(-k-(-k))^2

2k^2-k-2 = 4^2+(-k+k)^2

                              = 4

2k^2-k = 4+2

                           = 6

2k^2-k-6 = 0

2k^2-4k+3k-6=0

2k(k-2)+3(k-2)=0

(k-2)(2k+3)=0

Hence

k-2=0 , 2k+3=0

k=2 , 2k=-3

                        k=\frac{-3}{2}

Similar questions