Math, asked by sitaram49, 3 months ago

if the circumference of the base of cylinder is 44cm and the sum of its radius and height is 27 cm, find its total surface area.

Answers

Answered by SarcasticKarma
3

Answer:

\sf Given \begin{cases} & \sf{Circumference\:of\:the\:base\;of\:cylinder = \bf{44\:cm}}  \\ & \sf{Sum\:of\:radius\:and\:height\:of\:cylinder = \bf{27\:cm}} \end{cases}\\ \\

To find: Total surface area of cylinder?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

☯ Let's consider r and h be the radius and height of cylinder respectively.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times r = 44 \\ \\

:\implies\sf \dfrac{44}{7} \times r = 44\\ \\

:\implies\sf  r = \cancel{44} \times \dfrac{7}{ \cancel{44}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{r = 7\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Radius\:of\:cylinder\:is\: {\textsf{\textbf{7\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sum of radius and height of cylinder is 27 cm.

⠀⠀⠀⠀

:\implies\sf r + h = 27\\ \\

:\implies\sf 7 + h = 27\\ \\

:\implies\sf h = 27 - 7\\ \\

:\implies{\underline{\boxed{\frak{\purple{h = 20\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Height\:of\:cylinder\:is\: {\textsf{\textbf{20\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Now, Finding Curved surface area of cylinder,

⠀⠀⠀

\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \bigg( 7 + 20 \bigg)\\ \\

:\implies\sf 2 \times 22 \times 27\\ \\

:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}

Answered by EvilExtinction
19

Answer:

\huge{\tt{\red{}\green{A}\purple{N}\pink{S}\blue{W}\orange{E}\red{R}}}

</p><p>⠀⠀⠀</p><p>\begin{gathered}\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\\end{gathered}

⋆Totalsurfacearea(rectangle)=2πr(r+h)</p><p></p><p>

⟹2×722×7(7+20)</u></p><p><u>[tex]⟹2×722×7(7+20)

⟹2×22×27</u></p><p><u>[tex]⟹2×22×27

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\\end{gathered}

:⟹1188cm2★</u></p><p><u>[tex]:⟹1188cm2★

\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}∴Totalsurfaceareaofcylinderis1188cm2.</u></p><p><u>[tex]\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}∴Totalsurfaceareaofcylinderis1188cm2.

Similar questions