If the coordinates of vertices of AOAB are (0,0) (cosa, sina) and (-sina, cosa) respectively, then OA2 + OB2 =
?????
Answers
Answered by
2
Answer:
A=1 and OB=1 ∴
AB= √2∴(cosβ−cosα)2(sinβ−sinα)2 =2
⟹cos 2α+sin 2α+cos2 β+sin
2
β−2sinβsinα−2cosβcosα=2
⟹2sinβsinα+2cosβcosα=0
∴cos(α−β)=0
⟹sin( 2α−β )/2=± 1/√2
⟹cos( 2α−β)/2=± 1/√2
Similar questions