Math, asked by mahatohiranmoy636, 6 hours ago

if the cost price of 18 mangoes is equal to the selling price of 16 mangoes. find the profite percent and loss percent​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

  • Cost Price of 18 mangoes is equals to the selling price of 16 mangoes.

So,

Let we assume that

  • Cost Price of one mango is Re 1

So,

  • Cost price of 16 mangoes is Rs 16

  • Cost Price of 18 mangoes is Rs 18.

According to statement, it is given that

Cost Price of 18 mangoes is equals to the selling price of 16 mangoes.

So,

  • Selling Price of 16 mangoes = Rs 18

So, we have following information :

➢ Selling Price of 16 mangoes = Rs 18

➢ Cost Price of 16 mangoes = Rs 16

So, It means Selling Price > Cost Price

It means, there is Profit in this transaction.

So,

\rm :\longmapsto\:Profit = Selling \: Price - Cost \: Price

\rm :\longmapsto\:Profit = 18 - 16

\rm :\longmapsto\:Profit = 2

And,

\rm :\longmapsto\:Profit\% = \dfrac{Profit}{Cost \: Price} \times 100\%

\rm :\longmapsto\:Profit\% = \dfrac{2}{16}  \times 100\%

\rm :\longmapsto\:Profit\% = \dfrac{1}{8}  \times 100\%

\rm\implies \:\boxed{\tt{ Profit\% \:  =  \: 12.5 \: \% \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given that

Cost Price of 18 mangoes is equals to the selling price of 16 mangoes.

So,

Let we assume that

Cost Price of one mango is Re 1

So,

Cost price of 16 mangoes is Rs 16

Cost Price of 18 mangoes is Rs 18.

According to statement, it is given that

Cost Price of 18 mangoes is equals to the selling price of 16 mangoes.

So,

Selling Price of 16 mangoes = Rs 18

So, we have following information :

➢ Selling Price of 16 mangoes = Rs 18

➢ Cost Price of 16 mangoes = Rs 16

So, It means Selling Price > Cost Price

It means, there is Profit in this transaction.

So,

\rm :\longmapsto\:Profit = Selling \: Price - Cost \: Price

\rm :\longmapsto\:Profit = 18 - 16

\rm :\longmapsto\:Profit = 2

And,

\rm :\longmapsto\:Profit\% = \dfrac{Profit}{Cost \: Price} \times 100\%

\rm :\longmapsto\:Profit\% = \dfrac{2}{16}  \times 100\%

\rm :\longmapsto\:Profit\% = \dfrac{1}{8}  \times 100\%

\rm\implies \:\boxed{\tt{ Profit\% \:  =  \: 12.5 \: \% \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions