Math, asked by Anonymous, 1 month ago

If the curved surface area of a right circular cylinder is 704 sq.cm, and height is 8 cm, find the volume of the cylinder​

Answers

Answered by Itzheartcracer
12

Given :-

CSA of cylinder =  704 cm²

Height = 8 cm

To Find :-

Volume

Solution :-

We know that

CSA of cylinder = 2πrh

704 = 2 × 22/7 × r × 8

704 = 44/7 × r × 8

704 × 7/44 × 8 = r

14 = r

Now

Volume = πr²h

Volume = 22/7 × (14)² × 8

Volume = 22/7 × 196 × 8

Volume = 22 × 28 × 8

Volume = 4928 cm³

Answered by mathdude500
57

\large\underline{\sf{Solution-}}

Given that,

Curved Surface Area of Cylinder = 704 sq. cm

and

Height of cylinder, h = 8 cm

Let assume that the radius of cylinder be r cm

We know,

Curved Surface Area of cylinder is

\boxed{ \tt{ \: CSA_{cylinder} \:  =  \: 2 \: \pi \: r \: h \: }}

where,

  • CSA is Curved Surface Area

  • h is height

  • r is radius.

So, on substituting the values, we get

\rm :\longmapsto\:704 = 2 \times \dfrac{22}{7}  \times r \times 8

\rm :\longmapsto\:32 = 2 \times \dfrac{1}{7}  \times r \times 8

\rm :\longmapsto\:2 =  \dfrac{1}{7}  \times r

\rm \implies\:\boxed{ \tt{ \: r \:  =  \: 14 \: cm \: }}

Now, we know that,

\boxed{ \tt{ \: Volume_{cylinder} \:  =  \: \pi \:  {r}^{2}  \: h \:  \: }}

So, on substituting the values, we get

\rm :\longmapsto\: \: Volume_{cylinder} \:  =  \: \dfrac{22}{7} \:  \times  {(14)}^{2}  \times  \: 8\:  \:

\rm :\longmapsto\: \: Volume_{cylinder} \:  =  \: \dfrac{22}{7} \:  \times  14 \times 14\times  \: 8\:  \:

\rm :\longmapsto\: \: Volume_{cylinder} \:  =  \: 22 \times 2 \times 14\times  \: 8\:  \:

\rm :\longmapsto\: \: Volume_{cylinder} \:  =  \: 44 \times 112\:  \:

\rm :\longmapsto\: \boxed{ \tt{ \: \: Volume_{cylinder} \:  =  \: 4928 \:  {cm}^{3}  \:  \: }}

More to know :-

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions