Math, asked by Shreyanshijaiswal81, 2 days ago

If the diagonals of a parallelogram are equal, then show that it is a rectangle.
 \:  \:  \:  \:

Answers

Answered by Sen0rita
39

 \sf \underline{ \dag \: Solution \:  : }

 \:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier (0,0)(0,0)(5,0)\qbezier (0,0)(0,0)(0,3)\qbezier (0,3)(0,3)(5,3)\qbezier (5,3)(5,3)(5,0)\qbezier (0,3)(5,0)(5,0)\qbezier (0,0)(0,0)(5,3)\put (-0.4,-0.2){\sf D}\put (-0.2,3.1){\sf A}\put (5.2,3.1){\sf B}\put (5.2,-0.2){\sf C}\put (2.4,1){\sf O}\put (2,-0.4){\bf x\:cm}\put (-1,1.5){\sf y\:cm}\end {picture}

 \:

Given : in parallelogram ABCD, AC = BD

To Prove : parallelogram ABCD is a rectangle.

⠀⠀⠀⠀⠀⠀____________________

Proof :

 \:

In ACB and BDA

AC = BD | Given

AB = AB | Common

BC = AD | Opposite sides of the parallelogram

∆ACB ∆BDA

∴ ∠ABC = ∠BCD (C.P.C.T) ...i)

 \:

Again,

 \:

AD || BC | Opposite sides of the parallelogram

AD || BC and the transversal AB intersects them

∴ ∠BAD + ∠ABC = 180° | sum of the consecutive interior angles on the same side of the transversal is 180° ...ii)

 \:

From i) and ii)

 \:

∠BAD = ∠ABC = 90°

∴ ∠A = 90° ∠C = 90°

So, parallelogram ABCD is a rectangle.

Answered by dipali2604
1

Answer:

Given : in parallelogram ABCD, AC = BD

To Prove : parallelogram ABCD is a rectangle.

Proof :

In ∆ACB and ∆BDA

AC = BD | Given

AB = AB | Common

BC = AD | Opposite sides of the parallelogram

∆ACB ≅ ∆BDA

∴ ∠ABC = ∠BCD (C.P.C.T) ...i)

Again,

AD || BC | Opposite sides of the parallelogram

AD || BC and the transversal AB intersects them

∴ ∠BAD + ∠ABC = 180° | sum of the consecutive interior angles on the same side of the transversal is 180° ...ii)

From i) and ii)

∠BAD = ∠ABC = 90°

∴ ∠A = 90° ∠C = 90°

So, parallelogram ABCD is a rectangle.

Similar questions