Math, asked by sushi4176, 1 year ago

If the difference between the outer and inner surface areas of a hollow cylinder of height 14cm is 44cm square and 88 cmcube metal is used to make the hollow cylinder then find the inner and outer radius of the pipe

Answers

Answered by anonymous64
0
\sf{\boxed{\bold{\tiny{Heya \: mate.\: Solution\: below}}}}
=========================================

<b><u><font color ="red">Answer - ↓↓↓</font color></u></b>




♠ Given Height (h) = 14 cm

Let the outer radius be R and inner radius be r.


Then, Outer Curved surface area (C.S.A) = 2πRh

Inner C.S.A = 2πrh

Outer Volume = πR²h

Inner Volume = πr²h



♠ Now, its given that difference between outer C.S.A and inner C.S.A is 44 cm².


\sf{=⟩ 2 \pi R h - 2 \pi r h = 44}

\sf{=⟩ 2 \pi h (R - r) = 44}

\sf{=⟩ 2 \times \frac {22}{7} \times 14 (R - r) = 44}

\sf{=⟩ R - r = 44 \times \frac{1}{14} \times \frac{1}{2} \times \frac{7}{22}}

\sf{=⟩ R - r = \frac{1}{2}}....eq i



♠ Also, Volume of metal used to make the cylinder is 88 cm³


\sf{=⟩ \pi {R}^{2} h - \pi {r}^{2} h = 88}

\sf{=⟩ \pi h ({R}^{2} - {r}^{2}) = 88}

\sf{=⟩ \frac{22}{7} \times 14 \times ({R}^{2} - {r}^{2}) = 88}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 88 \times \frac{1}{14} \times \frac{7}{22}}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 2 }... eq ii

\sf{=⟩ (R + r)(R - r) = 2}




♠ Then, from eq i and ii,

\sf{(R + r)(R - r) = 2}

\sf{=⟩ (R + r) (\frac{1}{2}) = 2}

\sf{=⟩ R + r = 2 \times 2}

\sf{=⟩ R + r = 4}... eq iii




♠ Adding eq i and iii,


\sf{(R - r) + (R + r) = 4 + \frac{1}{2}}

\sf{=⟩ R - r + R + r = \frac{9}{2}}

\sf{=⟩ 2R = \frac{9}{2}}

\sf{=⟩ R = \frac{9}{2} \times \frac{1}{2}}

\sf{=⟩ R = \frac{9}{4}}




♠ Now, substituting the value of R in eq iii,


\sf{\frac{9}{4} + r = 4}

\sf{=⟩ r = 4 - \frac{9}{4}}

\sf{=⟩ r = \frac{7}{4}}




♥♥♥ •°• The outer radius is 9/4 cm and inner radius is 7/4 cm. ♥♥♥
=========================================

Thank you... (^_-)
Similar questions