Math, asked by caprisimmi, 1 year ago

if the difference of the roots of the quadratic equation is 5 and the difference if their cubes is 215, find the quadratic equation ........Plz help me ASAP

Attachments:

Answers

Answered by sankojumanasa19
3

let \: the \: roots \: be = a \: and \: b \\ then \: given \: that \: a - b = 5 and \:  {a}^{3 -  {b}^{3} }  = 215 \\   {a - b}^{3}  =  {a}^{3}  - 3 {a}^{2} b + 3a {b}^{2}  -  {b}^{3}  =  {5}^{3}  \\ ( {a}^{3}  -  {b}^{3} ) - 3 {a}^{2} b  + 3a {b}^{2}  = 125 \\ 215 - 3( {a}^{2} b  -   {b}^{2} a) = 125 \\  - 3( {a}^{2} b -  {b}^{2} a) = 125 - 215 \\  {a}^{2} b -  {b}^{2} a =   - 90 \div  - 3 \\  =  {a}^{2} b -  {b}^{2} a = 30 \\ so \: the \: eqution \: is \\  {a}^{2} b -  {b}^{2} a - 30 = 0
Similar questions