Math, asked by deepikareddy84, 9 months ago

If the difference of the roots of the quadratics equation x²-ax+bis 1
then

Answers

Answered by harshpreets550
1

Heye

your answer

________________________

Given If the difference of the roots of the quadratic equation x2 - ax + b = 0 is 1. then  prove that a2 = 4b + 1.

Given If the difference of the roots of the quadratic equation x2 - ax + b = 0 is 1. then  prove that a2 = 4b + 1.Let α and β be the roots of the quadratic equation  

Given If the difference of the roots of the quadratic equation x2 - ax + b = 0 is 1. then  prove that a2 = 4b + 1.Let α and β be the roots of the quadratic equation  So  x^2 – ax + b = 0

Given If the difference of the roots of the quadratic equation x2 - ax + b = 0 is 1. then  prove that a2 = 4b + 1.Let α and β be the roots of the quadratic equation  So  x^2 – ax + b = 0Comparing with ax^2 + bx + c we get a = 1, b = - a and

c = b

c = bNow sum of roots α + β = - b / a

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = a

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1                          = b

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1                          = bAccording to question α – β = 1

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1                          = bAccording to question α – β = 1                                 (α – β^2 = α + β)^2 - 4αβ

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1                          = bAccording to question α – β = 1                                 (α – β^2 = α + β)^2 - 4αβ                                     1^2 = a^2 – 4b

c = bNow sum of roots α + β = - b / a                                         = -(-a) / 1                                          = aProduct of roots = c/a                          = b / 1                          = bAccording to question α – β = 1                                 (α – β^2 = α + β)^2 - 4αβ                                     1^2 = a^2 – 4bOr we get a^2 = 4b + 1

________________________

mark me brainliest........

Similar questions