Math, asked by unknown78624, 2 months ago

If the difference of the zeroes of the quadratic polynomial is 5/2 and the difference of their

cubes is 65/8, find the quadratic polynomial.​

Answers

Answered by suhail2070
1

Answer:

2 {x}^{2}  - 3x - 2 = 0 \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 {x}^{2}  + 3x - 2 = 0

Step-by-step explanation:

 \alpha   - \beta  =  \frac{5}{2}  \\  \\  { \alpha }^{3}  -  { \beta }^{3}  =  \frac{65}{8}  \\  \\ ( \alpha   - \beta )( { \alpha }^{2}  +  { \beta }^{2}   +   \alpha  \beta ) =  \frac{65}{8}  \\  \\  \frac{5}{2} ( {( \alpha   -   \beta) }^{2}  +3 (  \alpha  \beta ) =  \frac{65}{8}  \\  \\ (  \frac{25}{4}  +3  \alpha  \beta ) =  \frac{13}{4}  \\  \\  \alpha  \beta  =  - 1 \\  \\ (  { \alpha +   \beta )}^{2}   =  {( \alpha   - \beta) }^{2}  + 4 \alpha  \beta   \\  \\  {( \alpha  +  \beta ) }^{2}  =   \frac{25}{4}  + 4( - 1) \\  \\  {( \alpha   + \beta )}^{2}  =  \frac{25 - 16}{4}  =   \frac{9}{4}   \\  \\  \alpha  +  \beta  =  \frac{3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \alpha  +  \beta  =  \frac{ - 3}{2}  \\  \\ required \:  \: equation \:  \:  \:  \:  \:  \:  \:  {x}^{2}  -  \frac{3}{2} x  - 1 = 0 \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}   +  \frac{3}{2} x  - 1 = 0 \\  \\  \\ 2 {x}^{2}  - 3x - 2 = 0 \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 {x}^{2}  + 3x - 2 = 0

Similar questions