Math, asked by bk6148454, 1 day ago

If the direction cosines of a line is <2/7,3/7,k/7>then find the value of k?

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

Direction cosines of the line is  \bigg(\dfrac{2}{7}, \dfrac{3}{7},\dfrac{k}{7} \bigg )

We know,

If the direction cosines of the line is (l, m, n) then

 \boxed{ \: {l}^{2} +  {m}^{2} +  {n}^{2}  \:  =  \: 1 \: } \\

Here,

 \: l \:  =  \: \dfrac{2}{7}  \\

 \: m \:  =  \: \dfrac{3}{7}  \\

 \: n \:  =  \: \dfrac{k}{7}  \\

So, on substituting the values, we get

\rm \:  {\bigg(\dfrac{2}{7} \bigg) }^{2} + {\bigg(\dfrac{3}{7} \bigg) }^{2} + {\bigg(\dfrac{k}{7} \bigg) }^{2} = 1 \\

\rm \: \dfrac{4}{49}  + \dfrac{9}{49}  + \dfrac{k^{2} }{49}  = 1 \\

\rm \:  \dfrac{4 + 9 + k^{2} }{49}  = 1 \\

\rm \:  \dfrac{13 +  {k}^{2} }{49}  = 1 \\

\rm \: 13 +  {k}^{2} = 49 \\

\rm \:  {k}^{2} = 49  - 13\\

\rm \:  {k}^{2} = 36\\

\rm\implies \:\boxed{ \rm{ \:k \:  =  \:  \pm \: 6 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. The direction cosines of x - axis is (1, 0, 0)

2. The direction cosines of y - axis is (0, 1, 0)

3. The direction cosines of z - axis is (0, 0, 1)

Similar questions