Math, asked by balwindersingh5551, 11 months ago

If the discriminant of the equation 5x^2- sx + 4 =0 is
1. then find the value of s.​

Answers

Answered by EliteSoul
96

Given

Quadratic equation : 5x² - sx + 4 = 0

Discriminant = 1

To find

Value of s

Solution

Here, discriminant is given as 1

Comparing the given equation with ax² + bx + c, we get :

  • a = 5
  • b = -s
  • c = 4

As we know discriminant formula :

➨ D = b² - 4ac

Putting values :

⟼ (-s)² - (4 × 5 × 4) = 1

⟼ s² - (80) = 1

⟼ s² = 1 + 80

⟼ s² = 81

⟼ s = √81

s = 9

Therefore,

Required value of s = 9 .

Answered by Anonymous
26

 \huge \bf \red{Answer}

 \tt{ \boxed{ \huge{ \underline{ \blue{ \tt{9 \: }}}}}}

_____________________________________

 \bf \huge{Question}

If the discriminant of the equation 5x^2- sx + 4 =0 is 1. then find the value of s.

________________________________

Step by step explanation:

 \tt \underline \red{Given}

 \sf{⟹equation \: is \: 5 {x}^{2} - sx + 4 = 0}

 \sf{⟹discriminant \: is \: 1}

__________________________________

 \tt \underline \red{To \:  Find}

 \sf{⟹the \: value \: of \: x}

_________________________________

 \tt \underline \red{problem \: solve}

Do u know formula of qudratic equation?

 \bf{ \boxed{ \green{ \tt{a {x}^{2} + bx + c \: }}}}

so,

 \sf{⟹given \: discriminant \: is \: 1}

_________________________

  • a = 5

  • b = -s

  • c= 4

Now discriminant formula is

 \bf{ \boxed{ \underline{ \blue{ \tt{D =  {b}^{2} - 4ac \: }}}}}

Then

 \rm{⟹( - s) - 4 \times 5 \times 4 = 1}

 \sf{⟹ {s}^{2} - (80) = 1}

 \sf{⟹ {s}^{2} = 1 + 80}

 \sf{⟹ {s}^{2} = 81}

 \sf{⟹now \: use \: the \: root}

 \sf{⟹ {s}=  \sqrt{81}}

 \sf{⟹s = 9}

so,

 \rm{ \boxed{ \green{ \tt{value \: of \: s \: is \: 9 \: }}}}

Similar questions