Math, asked by xerpatenzi, 10 months ago

if the distance between (2, 3) and (8, k) is 10 find the value of k.

Answers

Answered by Mysterioushine
9

SOLUTION :

DISTANCE BETWEEN ANY TWO POINTS = [ (x-x)² + (y-y)²]

GIVEN POINTS = (2,3) (8,k)

x, y x ,y

GIVEN DISTANCE = 10

=> [ (8-2)² + ( k-3)² ] = 10

=> [ 36 + (k-3)² ] = 10

SQUARING ON BOTH SIDES ,

=> 36 + (k-3)² = 100

=> 36 + k² + 9 - 6k = 100

{ (a-b)² = a² + b² - 2ab }

=> k² - 6k = 100 - 45

=> k² - 6k - 55 = 0

=> k² + 5k - 11k - 55 = 0

=> k( k + 5 ) -11 ( k + 5 ) = 0

=> ( k - 11 )( k + 5 ) = 0

=> k = 11 (or) k = -5

HOPE IT HELPS !!!

Answered by Anonymous
16

Step-by-step explanation:

Distance Formula :-

 \sqrt{ {(x2 - x1)}^{2} +  {(y2 - y1)}^{2}  }

Given :-

Distance  \: between \:  the \:   points = 10 \\  =  >   \sqrt{ {(2 - 8)}^{2} +  {(3 - k)}^{2}  }   = 10\\  =  \sqrt{ { ( - 6)}^{2}  +  {(3)}^{2}  +  {k}^{2} + 2 \times 3 \times k } = 10  \\  =  \sqrt{36 + 9 +  {k}^{2} + 6k }  = 10 \\  =  >  \sqrt{45 +  {k}^{2} + 6k }  = 10 \\  =  >  {k}^{2}  + 6k + 45 =  {10}^{2}  \\  =  >  {k}^{2}  + 6k + 45 - 100 = 0 \\  =  >  {k}^{2}  + 6k  + (  - 55) = 0 \\  =  >  {k}^{2}  + 6k - 55 = 0 \\  =  >  {k}^{2}    + 11k - 5k - 55 = 0 \\  =  > k(k + 11) - 5(k  + 11) = 0 \\  =  > (k - 5)(k + 11) = 0 \\  =  > k \:  = 5 \: ( \: or \: ) \:  - 11

Hope it helps you.....

PLEASE FOLLOW ME.....

Similar questions