Math, asked by abdulkhadarar93, 1 month ago

if the distance between the origin and the point p (x,15) is 17 units , the value of x is​

Answers

Answered by VεnusVεronίcα
39

Answer:

The value of x is – 8 or 8 if the distance between the origin and the point p (x, 15) is 17 units.

 \\

Step-by-step explanation:

The distance between the origin and the point p (x, 15) is 17 units.

The coordinates of the origin are (0, 0).

 \:

So we have :

\quad ~x = 0

\quad~ x = x

\quad~y = 0

\quad~ y = 15

~

Substituting these values in the distance formula and solving for x :

 \sf \quad :  \implies \:  \sqrt{ {( x_{2} -  x_{1}) }^{2}  +  {( y_{2} -  y_{1}) }^{2} }

  \sf\quad :  \implies \:  \sqrt{ {(x - 0)}^{2}  +  {(15 - 0)}^{2} }  = 17

  \sf\quad :  \implies \: \sqrt{ {x}^{2}  +  {(  15)}^{2} }  = 17

 \sf \quad :  \implies \:  \sqrt{ {x}^{2}  + 225}  = 17

  \sf\quad :  \implies \:  {x}^{2}  + 225 = 289

 \sf \quad :  \implies \:  {x}^{2}  + 225 - 289 = 0

 \sf \quad :  \implies \:  {x}^{2}  - 64 = 0

 \:

Factorising 64 using the identity :

  \sf\quad :  \implies \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

 \sf  \quad:  \implies \:  {a}^{2}  =  {x}^{2} \: \:  \:  \:   \:  {b}^{2}  = 64

 \sf \quad :  \implies \:  {x}^{2}  - 64 = (x + 8)(x - 8)

 \:

Finding the zeroes of (x + 8) and (x 8) :

 \sf \quad :  \implies \: (x + 8)    :   x =  - 8

 \sf \quad :  \implies \: (x - 8) : x = 8

 \:

The value of x is either 8 or 8.

Similar questions