Math, asked by nandasoubhagya772, 4 months ago

If the distance between the points
(3, a) and (6,1) is s, find the value of a​

Answers

Answered by likithaliki9
0

Answer:

The value of a is 5.

Step-by-step explanation:

Given : If the distance between the points (3,a) and (6,1) is 5.

To find : The value of a?

Solution :

The distance formula of two points is d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

Here, (x_1,y_1)=(3,a)(x

1

,y

1

)=(3,a) , (x_2,y_2)=(6,1)(x

2

,y

2

)=(6,1) and d=5

5=\sqrt{(6-3)^2+(1-a)^2}5=

(6−3)

2

+(1−a)

2

Squaring both side,

25=(3)^2+(1-a)^225=(3)

2

+(1−a)

2

25=9+1+a^2-2a25=9+1+a

2

−2a

a^2-2a-15=0a

2

−2a−15=0

a^2-5a+3a-15=0a

2

−5a+3a−15=0

a(a-5)+3(a-5)=0a(a−5)+3(a−5)=0

(a-5)(a+3)=0(a−5)(a+3)=0

a=5,-3a=5,−3

Reject a=-3.

The value of a is 5.

Answered by likithaliki9
0

Answer:

The value of a is 5.

Step-by-step explanation:

Given : If the distance between the points (3,a) and (6,1) is 5.

To find : The value of a?

Solution :

The distance formula of two points is d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

Here, (x_1,y_1)=(3,a)(x

1

,y

1

)=(3,a) , (x_2,y_2)=(6,1)(x

2

,y

2

)=(6,1) and d=5

5=\sqrt{(6-3)^2+(1-a)^2}5=

(6−3)

2

+(1−a)

2

Squaring both side,

25=(3)^2+(1-a)^225=(3)

2

+(1−a)

2

25=9+1+a^2-2a25=9+1+a

2

−2a

a^2-2a-15=0a

2

−2a−15=0

a^2-5a+3a-15=0a

2

−5a+3a−15=0

a(a-5)+3(a-5)=0a(a−5)+3(a−5)=0

(a-5)(a+3)=0(a−5)(a+3)=0

a=5,-3a=5,−3

Reject a=-3.

The value of a is 5.

Similar questions