Math, asked by DipeshBaral, 2 months ago

If the distance between the points (a,2a) and (4a,6a) is 20 units. Find the value of a.

Answers

Answered by DeeznutzUwU
3

      \underline{\bold{Answer:}}

      +4,-4

      \underline{\bold{Step-by-step-explaination:}}

      \text{The two given points are }(a,2a) \text{ and }(4a,6a), \text{the distance between them}\\\text{is }20 \text{ units}

      \text{Applying the distance formula}

\implies \boxed{\sqrt{(a-4a)^{2} + (2a-6a)^{2}}= 20}

\implies \boxed{\sqrt{(-3a)^{2} + (-4a)^{2} } = 20}

\implies \boxed{\sqrt{(9a^{2} + 16a^{2}}=20}

\implies \boxed{\sqrt{25a^{2} }} = 20

      \text{Squaring both sides}

\implies \boxed{25a^{2} = (20)^{2} }

\implies \boxed{25a^{2} = 400}

\implies \boxed{a^{2}= 16}

\implies \boxed{a = \sqrt{16}}

      \text{We know that }\sqrt{x^{2}} = +x,-x

\implies \boxed{a = +4,-4}

Similar questions