Math, asked by aishwarya1947, 7 months ago

If the distance between two points (5,2); (3,a) is √8 units then a =​

Answers

Answered by MяƖиνιѕιвʟє
9

Given :-

  • If the distance between two points (5,2)(3,a) is √8 units

To find :-

  • Value of a

Solution :-

According to distance formula

→ AB = √(x2 - x1)² + (y2 - y1)²

Let,

  • A = (5, 2)
  • B = (3, a)

According to the given condition

  • AB = √8

→ AB = √(x2 - x1)² + (y2 - y1)²

→ √8 = √(3 - 5)² + (a - 2)²

→ √8 = √(-2)² + a² + 4 - 4a

→ √8 = √4 + a² + 4 - 4a

→ √8 = √8 + a² - 4a

Squaring both side

→ 8 = 8 + a² - 4a

→ a² - 4a + 8 - 8 = 0

→ a² - 4a = 0

→ a(a - 4) = 0

Either

→ a = 0

Or

→ a - 4 = 0

→ a = 4

Hence,

  • Value of a is 4

Answered by Anonymous
17

\;\;\underline{\textbf{\textsf{ Given:-}}}

• The distance between two points

(5,2)(3,a) is √8 units.

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Value of "a "

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Let,

P = (5, 2)

Q = (3, a)

\underline{\:\textsf{As we know that:}}

 \star  \boxed{ \green{\bold{ d =  \sqrt{ ({x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  } }}} \\

Where,

• d = PQ

• x₁ = 5

• x₂ = 5

• y₁ = a

• y₂ = 2

\underline{\:\textsf{ Now, put the given values in the formula :}}

\sf{\sqrt{(x_2-x_1)^2+(y_2-y_2)^2}}

\sf \sqrt{(3-5)^2+(a-2)^2}

\sf \sqrt{(-2)^2+(a-2)^2}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\underline{\green{\:\:\:\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:\:}}

→√8 = PQ

→ √8 = √(-2)² + a² + 4 - 4a

→ √8 = √4 + a² + 4 - 4a

→ √8 = √8 + a² - 4a

→ a² - 4a + 8 - 8 = 0

→ a² - 4a = 0

→ a(a - 4) = 0

Hence,

\bf{ \longrightarrow a  = 0}

OR,

\bf{ \longrightarrow a  = 4}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Value of a  is  \textbf{ 4 or,  0  }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions