Math, asked by binodsharma277333, 9 months ago

If the duplicate ratio of a+x:b+x is a:b then show that x=+√ab ​

Answers

Answered by 173tanveer
6

Answer:

(Check the image)

________________________

❤ HOPEFULLY IT HELPS ❤

Attachments:
Answered by Sitααrα
13

Given :

  • If the duplicate ratio of a + x : b + x is a : b then show that x = ±√ab

Solution :

Since, duplicate ratio of a + x : b + x is a : b .

 \\  \therefore \tt \:  \:  \:  \:  \dfrac{(a + x {)}^{2} }{ {(b + x)}^{2} }  =  \frac{a}{b}  \\  \\  \\  \tt :  \implies \:  \frac{ {a}^{2}  + 2ax +  {x}^{2} }{ {b}^{2} + 2bx +   {x}^{2} }  =  \frac{a}{b}  \\  \\

By doing cross multiplication we get :

 \\  \tt :  \implies \: b( {a}^{2}  + 2ax +  {x}^{2} ) = a( {b}^{2}  + 2bx +  {x}^{2} ) \\  \\  \\  \tt \: :  \implies \:  {a}^{2} b +2abx + b {x}^{2}  =  a{b}^{2}  + 2abx +  a{x}^{2}  \\   \\

Cancelling 2abx both sides :

 \tt : \implies \:  {a}^{2} b + \cancel{2abx} + b {x}^{2}  =  a{b}^{2}  +  \cancel{2abx }+  a{x}^{2} \:  \\  \\  \\ \tt : \implies  {a}^{2} b + b {x}^{2}  = a {b}^{2}  + a {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \tt \: : \implies  {a}^{2} b - a {b}^{2}  = a {x}^{2}  - b {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \tt \: : \implies ab(a - b) =  {x}^{2} (a - b)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\

Cancelling (a - b) from both sides :

 \\   \tt \: : \implies ab \cancel{(a - b) }=  {x}^{2} \cancel{ (a - b)} \\  \\   \\  \tt : \implies \: ab =  {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \tt : \implies \: { \underline{ \boxed{ \frak{ \pmb{x = ± \sqrt{\: ab}}}} }} \:  \:   \purple{\bigstar}  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\

Similar questions