If the equation (1+ m²)x² +2mcx +(c²-a²) =0 has equal roots prove that c² = a² ( 1 + m²)
(CBSE Class -10th SP)
Answers
Answered by
95
HELLO DEAR,
(1 + m2)x2 + 2 mcx + c2 - a2 = 0 has equal roots
=> b2 - 4ac = 0
=> (2 mc)2 - 4(1 + m2)(c2 - a2) = 0
=> 4m2c2 - 4(c2 - a2 + m2c2 - m2a2) = 0
=> 4m2c2 - 4c2 + 4a2 - 4m2c2 + 4m2a2 = 0
I HOPE ITS HELP YOU DEAR,
THANKS
=> 4m2a2 - 4c2 + 4a2 = 0
=> m2a2 - c2 + a2 = 0
=> a2(1 + m2) - c2 = 0
=> c2 = a2(1 + m2)
(1 + m2)x2 + 2 mcx + c2 - a2 = 0 has equal roots
=> b2 - 4ac = 0
=> (2 mc)2 - 4(1 + m2)(c2 - a2) = 0
=> 4m2c2 - 4(c2 - a2 + m2c2 - m2a2) = 0
=> 4m2c2 - 4c2 + 4a2 - 4m2c2 + 4m2a2 = 0
I HOPE ITS HELP YOU DEAR,
THANKS
=> 4m2a2 - 4c2 + 4a2 = 0
=> m2a2 - c2 + a2 = 0
=> a2(1 + m2) - c2 = 0
=> c2 = a2(1 + m2)
rohitkumargupta:
thanks for brainliest
Answered by
108
Hey there,
Conditions implemented → For equal roots
Hence, D=0 , b² = 4ac
proceeding in that manner,
Given equation,
(1 + m²)x² + 2mcx + ( c² - a² ) =0
For equal roots,
4m²c² = 4( 1 + m² ) ( c² - a² )
4m²c² = 4c² - 4a² + 4c²m² - 4a²m²
4c² - 4a²m² - 4a² = 0
4 [ c² - a²m² - a² ] = 0
c² = a²m² + a²
c² = a² [ 1 + m² ]
Hope this helps!
Conditions implemented → For equal roots
Hence, D=0 , b² = 4ac
proceeding in that manner,
Given equation,
(1 + m²)x² + 2mcx + ( c² - a² ) =0
For equal roots,
4m²c² = 4( 1 + m² ) ( c² - a² )
4m²c² = 4c² - 4a² + 4c²m² - 4a²m²
4c² - 4a²m² - 4a² = 0
4 [ c² - a²m² - a² ] = 0
c² = a²m² + a²
c² = a² [ 1 + m² ]
Hope this helps!
Similar questions