Math, asked by Heenapruthi7846, 1 year ago

if the equation (a²+b²)x²-2(ac+bd)x+c²+d²=0 has equal roots , then prove that ab=√cd

Answers

Answered by Shaik96
3
Take sum of roots and product of roots
r+r=((ac +bd)/ a2+b2)
r*r=c2+d2/(a2+b2)
Solve for r and equate both the r values from two equations
U will get the answer
Answered by mathsdude85
4

SOLUTION :  

Option (b) is correct :  ad = bc  

Given : (a² + b²)x² - 2(ac + bd)x + ( c² + d²) = 0

On comparing the given equation with ax² + bx + c = 0  

Here, a = (a² + b²) , b = - 2( ac + bd)  , c = ( c² + d²)

D(discriminant) = b² – 4ac

Given roots are equal so, D = b² - 4ac = 0

{- 2(ac + bd)}² - 4(a² +b²)(c² + d²) = 0

4(ac + bd)² - 4(a² + b²)(c²+ d²) = 0

4(a²c²+ b²d² + 2abcd ) - 4( a²c² + a²d² + b²d² +  b²c² = 0

[(a + b)² = a² + b² + 2ab]

4(a²c² + b²d² + 2abcd  - a²c² -  a²d² - b²d² -  b²c² ) = 0

(a²c² - a²c² + b²d² - b²d² + 2abcd  -  a²d² -  b²c² ) = 0

2abcd  -  a²d² -  b²c² = 0

-(a²d² + b²c² - 2abcd) = 0  

a²d² + b²c² - 2abcd = 0  

(ad)² + (bc)² - 2×ad × bc = 0

(ad - bc)² = 0

[(a - b)² = a² + b² - 2ab]

ad - bc = 0

ad = bc  

HOPE THIS ANSWER WILL HELP YOU...

Similar questions