If the equation x2 – bx + 1 = 0 has two distinct roots then
Answers
TOPIC :- QUADRATIC EQUATION.
SUB-TOPIC :- Quadratic equation and its discriminant.
CONCEPT :- If in a quadratic equation ax² + bx + c ,b²-4ac> 0 , then the quadratic equation has distinct roots.
STEPS
x² - bx + 1 = 0 is the quadratic equation.
applying b² - 4ac > 0
b² - 4 > 0
=> (b - 2) ( b + 2 ) = 0
Therefore b lies from
Regards
Kshitij
Step-by-step explanation:
TOPIC :- QUADRATIC EQUATION.
SUB-TOPIC :- Quadratic equation and its discriminant.
CONCEPT :- If in a quadratic equation ax² + bx + c ,b²-4ac> 0 , then the quadratic equation has distinct roots.
STEPS
x² - bx + 1 = 0 is the quadratic equation.
applying b² - 4ac > 0
b² - 4 > 0
=> (b - 2) ( b + 2 ) = 0
Therefore b lies from ( - \infty < /u > < /em > < /strong > < strong > < em > < u > < /u > < /em > < /strong > < strong > < em > < u > , < /u > < /em > < /strong > < strong > < em > < u > \: - 2) \: (2 \: \: < /u > < /em > < /strong > < strong > < em > < u > < /u > < /em > < /strong > < strong > < em > < u > < /u > < /em > < /strong > < strong > < em > < u > , < /u > < /em > < /strong > < strong > < em > < u > < /u > < /em > < /strong > < strong > < em > < u > \infty )(−∞</u></em></strong><strong><em><u></u></em></strong><strong><em><u>,</u></em></strong><strong><em><u>−2)(2</u></em></strong><strong><em><u></u></em></strong><strong><em><u></u></em></strong><strong><em><u>,</u></em></strong><strong><em><u></u></em></strong><strong><em><u>∞)
Regards