Math, asked by llogesh2005, 10 months ago

If the first term of an AP is 10 and the last term is 450 and the sum is 180 then find the common difference

Answers

Answered by Anonymous
2

Given :

First term (a) =10

Last term (l) =450

Sum of the terms (Sn) =180

______________________________________________

To FiND :

The common difference (d) =?

_______________________________________________

Formula UseD:

Tn \: =a+(n-1)d

Sn \:  =  \frac{n}{2} (2a + (n - 1)d)

Sn \:  =   \frac{n}{2} (l + a)

_______________________________________________

SolutioN:

Sn \:  =  \frac{n}{2} (l + a)

180 =  \frac{n}{2} (450 + 10) \\ 180 =  \frac{n}{2} (460) \\ 180 = 230n \\ n =  \frac{18}{23}

l \:  = a + (n - 1)d \\ 450 = 10 + ( \frac{18}{23}  - 1)d \\ 450 - 10 =  -  \frac{5}{23} d \\ 440 =  -  \frac{5}{23} d \\ d \:  =  -  \frac{440 \times 23}{5}  \\ d \:  =  - 2024

_____________________________________________

Therefore, the common difference is - 2024.

Answered by Anonymous
1

________________________________

\huge\tt{GIVEN:}

  • The first term of an AP is 10 and the last term is 450

________________________________

\huge\tt{TO~FIND:}

  • The common difference

________________________________

\huge\tt{SOLUTION:}

➠Sum of the terms = ⁿ/2(l+b)

➠180= ⁿ/2(450+10)

➠180 = 230n

➠18/23 = n

➠l = a + (n-1)d

➠450 = 10 + (18/23-1)d

➠450 - 10 = - 5/23d

➠440 = 5/23

➠440 × 23/5 = d

➠-2024 = D

________________________________

Similar questions