Math, asked by denialmagar11, 1 month ago

If the geometric mean between k-2 and k+4 is 4,find the value of k?​

Answers

Answered by rahmank00998
0

Answer:

if k−1 is the G.M between k−2 and k+1, then find the value of k

share

Share

Answer

G.M of (k−2)and(k+1) is (k−1)

(k−1)

2

=(k−2)(k+1)

k

2

−2k+1=k

2

−k−2

k=3

Answer verified by Toppr

View

334 Views

Was this answer helpful?

Answered by mathdude500
5

\purple{ \bf{ \: \large\underline{\sf{Given- }}}}

The geometric mean between k-2 and k+4 is 4.

\purple{ \bf{ \: \large\underline{\sf{To\:Find - }}}}

The value of k.

 \red{\boxed{ \rm{ \: \large\underline{\sf{Solution-}}}}}

Given that,

The geometric mean between k-2 and k+4 is 4.

We know,

Geometric mean, (g) between two real numbers a and b is given by

 \red{ \:  \:  \: \boxed{  \:  \: \rm{ \: g =  \sqrt{ab} \:  \:  \: }}}

Here,

\rm :\longmapsto\:a \:  =  \: k - 2

\rm :\longmapsto\:b \:  =  \: k + 4

\rm :\longmapsto\:g = 4

So, on substituting the values, we get

\rm :\longmapsto\:4 =  \sqrt{(k - 2)(k + 4)}

On squaring both sides, we get

\rm :\longmapsto\:16 = (k - 2)(k + 4)

\rm :\longmapsto\: {k}^{2} + 4k - 2k - 8 = 16

\rm :\longmapsto\: {k}^{2} + 2k - 8  - 16 = 0

\rm :\longmapsto\: {k}^{2} + 2k -24 = 0

\rm :\longmapsto\: {k}^{2} + 6k - 4k -24 = 0

\rm :\longmapsto\:(k + 6)(k - 4) = 0

\bf\implies \:k =  -  \: 6 \:  \:  \: or \:  \:  \: k = 4

Verification :-

When k = 4

Numbers are

\rm :\longmapsto\:a \:  =  \: k - 2 = 4 - 2 = 2

\rm :\longmapsto\:b \:  =  \: k  + 4 = 4  + 4= 8

\bf\implies \:g =  \sqrt{(2)(8)} =  \sqrt{16} = 4

Hence, Verified

Case :- 2

When k = - 6

Numbers are

\rm :\longmapsto\:a \:  =  \: k - 2 =  - 6 - 2 =  - 8

\rm :\longmapsto\:b \:  =  \: k  + 4 =  - 6  + 4=  - 2

\bf\implies \:g =  \sqrt{( - 2)( - 8)} =  \sqrt{16} = 4

Hence, Verified

More information :-

1. Arithmetic Mean between two numbers a and b is

 \red{\boxed{ \rm{  \:  \: \: AM =  \frac{a + b}{2} \:  \:  \: }}}

2. Arithmetic mean > Geometric Mean > Harmonic mean

3. Harmonic mean between two numbers a and b is

 \red{\boxed{ \rm{ \:  \:  \:  \: HM \:  =  \:  \frac{2ab}{a + b}  \:  \:  \:  \: }}}

Similar questions