Math, asked by pompa85, 1 year ago

If the HCF of 210 and 55 is expressible in the form 210 x 5 + 55y, find y.​

Answers

Answered by liza10987654321
5

Let us first find the HCF of 210 and 55.

Applying Euclid division lemna on 210 and 55, we get

210 = 55 × 3 + 45

55 = 45 × 1 + 10

45 = 4 × 10 + 5

10 = 5 × 2 + 0

We observe that the remainder at this stage is zero. So, the last divisor i.e., 5 is the HCF of 210 and 55.

∴ 5 = 210 × 5 + 55y

⇒ 55y = 5 - 1050 = -1045

∴ y = -19✔️✔️

✌✌✌✌✌✌✌✌✌

#follow me

Answered by Sauron
18

\textbf{\underline{\underline{Answer :-}}}

The value of y is -19.

\textbf{\underline{\underline{Explanation :-}}}

\textsf{\underline{\underline{Given :}}}

The two numbers = 210 and 5

HCF can be expressed as 210 x 5 + 55y

\textsf{\underline{\underline{To Find :}}}

The value of y

\textsf{\underline{\underline{Solution :}}}

First we need to find the HCF of 210 and 5.

Prime Factorization of 210 :

\begin{array}{r|l} 2 & 210 \\\cline{1-2} 3 & 105 \\\cline{1-2} 5 & 35 \\ \cline{1-2} 7 & 7 \\\cline{1-2}& 1 \end{array}

Prime Factorization of 5

\begin{array}{r|l} 5 & 5 \\\cline{1-2}& 1 \end{array}

\implies 210 = 2 × 3 × 5 × 7

\implies 5 = 5 × 1

HCF = 5

Solving the value of y :

\boxed{\sf{210 \times 5 + 55y}}

\sf{\implies} \: 210 \times 5 + 55y = 5

\sf{\implies} \: 1050 + 55y = 5

\sf{\implies} \: 55y = 5 - 1050

\sf{\implies} \: 55y =- 1045

\sf{\implies} \: y =\dfrac{ - 1045}{55}

\sf{\implies} \: y =- 19

\boxed{\sf{y =- 19}}

\therefore The value of y is -19.

\textbf{\underline{\underline{Verification :- }}}

\sf{\implies} \: 210 \times 5 + (55 \times ( - 19)) = 5

\sf{\implies} \: 210 \times 5+ ( - 1045) = 5

\sf{\implies} \: 1050 + ( - 1045) = 5

\sf{\implies} \: 5 = 5

Both sides are equal.

\therefore The value of y is -19.


Samrridhi: Hi
Samrridhi: Can I get one help
Similar questions